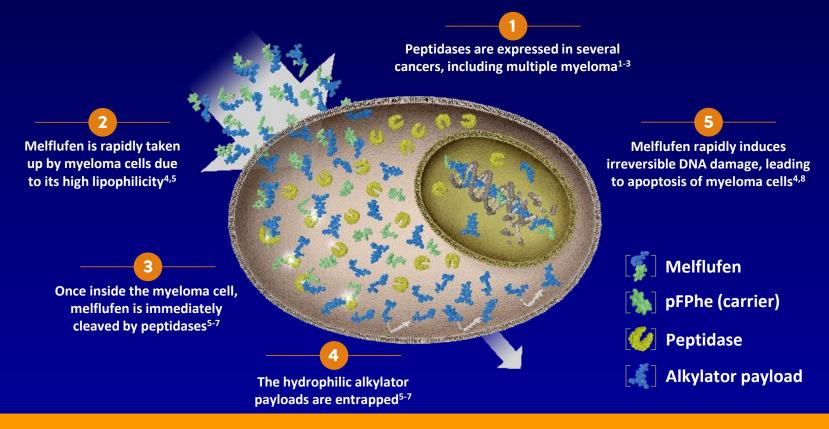


HORIZON (OP-106): Updated Efficacy and Safety of Melflufen in Relapsed/Refractory Multiple Myeloma Refractory to Daratumumab and/or Pomalidomide

<u>Paul G. Richardson, MD¹</u>; Albert Oriol, MD²; Alessandra Larocca, MD³; Paula Rodriguez Otero, MD⁴; Maxim Norkin, MD⁵; Joan Bladé, MD⁶; Michele Cavo, MD⁻; Hani Hassoun, MD˚; Xavier Leleu⁶; Adrián Alegre, MD¹⁰; Christopher Maisel, MD¹¹; Agne Paner, MD¹²; Amitabha Mazumder, MD¹³; Jeffrey A. Zonder, MD¹⁴; Noemí Puig, MD¹⁵; John Harran, BSN¹; Johan Harmenberg, MD¹⁶; Sara Thuresson, MSc¹⁶; Hanan Zubair, MSc¹⁶; and Maria-Victoria Mateos, MD, PhD¹⁵

¹Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ²Hospital Germans Trias i Pujol, Badalona, Spain; ³A.O.U. Città della Salute e della Scienza di Torino - S.C. Ematologia U, Torino, Italy; ⁴Clínica Universidad de Navarra, Pamplona, Spain; ⁵University of Florida Health Cancer Center, Gainesville, FL, USA; ⁶Hospital Clínica de Barcelona - Servicio de Onco-Hematología, Barcelona, Spain; ⁷Policlinico S. Orsola Malpighi, Bologna, Italy; ⁸Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁹CHU de Poitiers, Poitiers, France; ¹⁰Hospital Universitario La Princesa, Madrid, Spain; ¹¹Baylor Scott & White Charles A. Sammons Cancer Center, Dallas, TX, USA; ¹²Rush University Medical Center, Chicago, IL, USA; ¹³ The Oncology Institute of Hope and Innovation, Glendale, CA, USA; ¹⁴Karmanos Cancer Institute, Detroit, MI, USA; ¹⁵Hospital Clinico Universitario de Salamanca, Salamanca, Spain; and ¹⁶Oncopeptides AB, Stockholm, Sweden



Disclosures:

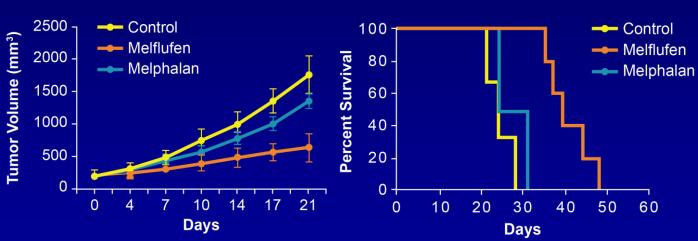
Paul G. Richardson: Consulting/Advisory Role for Oncopeptides and Research Funding from Oncopeptides.

Melflufen Is a Lipophilic Peptide-Conjugated Alkylator HORIZON That Rapidly Delivers a Highly Cytotoxic Payload Into Myeloma Cells

Peptidase-enhanced activity in multiple myeloma cells

Melflufen is 50-fold more potent than melphalan in myeloma cells in vitro due to increased intracellular alkylator activity^{4,5}

Richardson PG, et al EHA 2019 #S1605


^{1.} Hitzerd SM, et al. Amino Acids. 2014;46:793-808. 2. Moore HE, et al. Mol Cancer Ther. 2009;8:762-770. 3. Wickström M, et al. Cancer Sci. 2011;102:501-508. 4. Chauhan D, et al. Clin Cancer Res. 2013;19:3019-3031.

^{5.} Wickström M, et al. Oncotarget. 2017;8:66641-66655. 6. Wickström M, et al. Biochem Pharmacol. 2010;79:1281-1290. 7. Gullbo J, et al. J Drug Target. 2003;11:355-363. 8. Ray A, et al. Br J Haematol. 2016;174:397-409.

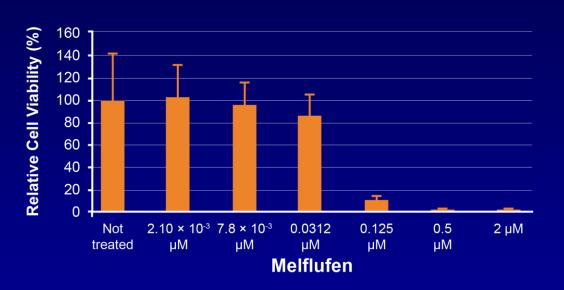
Selective Cytotoxicity of Melflufen: In Vivo Efficacy

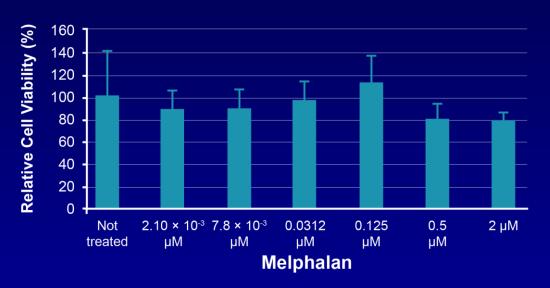
- In vivo human xenograft mouse models treated with melflufen showed higher inhibition of tumor growth and prolonged survival vs those treated with alkylators such as melphalan alone¹
- Melflufen showed pronounced anti-angiogenic activity (up to >100-fold) at lower doses than the alkylator melphalan alone²

In vivo efficacy of melflufen shown using a human plasmacytoma MM.1S xenograft mouse model. Treatment of tumor-bearing mice with melflufen intravenously significantly inhibited MM tumor growth (P = 0.001) and prolonged survival (P < 0.001) of these mice.¹

Decrease in tubule length and vessel junctions shown for melflufen, with dose response seen, compared with the positive control VEGF (2 ng/mL).²

1. Chauhan D, et al. Clin Cancer Res. 2013;19:3019-3031. 2. Strese S, et al. Biochem Pharmacol. 2013;86:888-895.


Richardson PG, et al EHA 2019 #S1605


Selective Cytotoxicity of Melflufen:

Osteoclast Precursor Activity

CD14+ Osteoclast Precursor

CD14+ Osteoclast Precursor

- Osteoclasts have short half-life, but activity against CD14+ osteoclast precursors should lower osteoclast activity and potentially improve bone pain in patients (pts) with multiple myeloma (MM)
- Melflufen shows pronounced activity against CD14+ osteoclast precursors at clinically relevant concentrations compared to melphalan

Oncopeptides: Unpublished data (data on file).

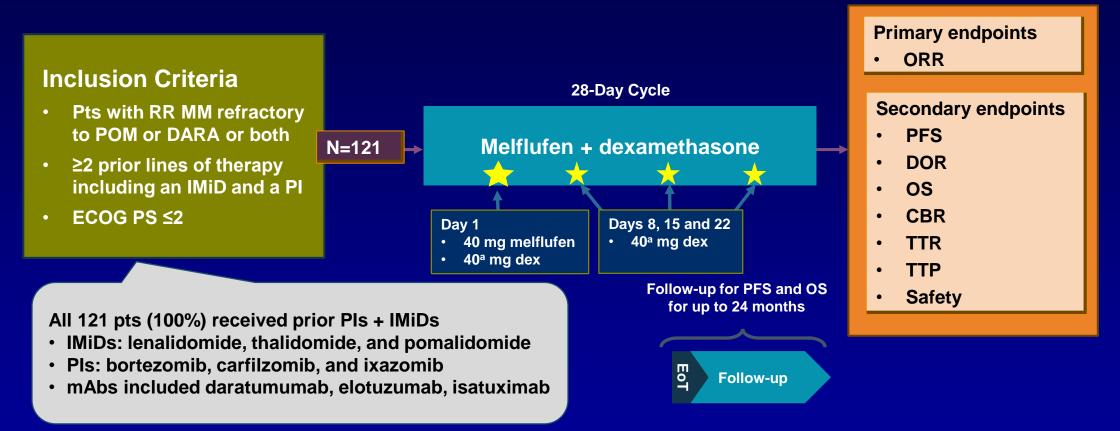
6

Unmet Medical Need in Relapsed and Refractory Multiple Myeloma (RR MM)

- Lenalidomide and PI-based failure in pts who subsequently become refractory to salvage therapy with daratumumab (anti-CD38 mAb) and/or pomalidomide have limited effective treatment options¹
- Introducing a treatment class switch with a novel compound may represent an important therapeutic strategy
- Of particular importance is to develop new treatment strategies for pts who are tripleclass refractory (IMiD + PI + anti-CD38 mAb), and especially those pts with extramedullary disease (EMD), who have very poor prognosis²

1. Ghandi UH, et al. Leukemia. 2019. [epub ahead of print]. 2. Usmani SZ, et al. Haematologica. 2012;97:1761-1777.

Melflufen in RR MM: O-12-M1 and ANCHOR



- O-12-M1 (N=45): melflufen + dex demonstrated promising and durable response in heavily pretreated RR MM^{1,2}
 - Pts refractory to both IMiDs/Pls and progressed on last line of therapy
 - ORR 31% and CBR 49% (with similar results regardless of disease status)
 - ORR 33% in pts (8 of 24) refractory to prior alkylator therapy
 - ORR 42% in pts (5 of 12) who progressed on prior alkylator therapy within ≤12 months
 - Median DOR 8.4 months; PFS 5.7 months and OS 20.7 months
 - Favorable tolerability hematologic toxicity common but clinically manageable;
 nonhematologic AEs infrequent
- Phase 1/2 study ANCHOR: melflufen plus dexamethasone demonstrated high response rate when combined with bortezomib or daratumumab in RR MM pts³
 - 100% ORR with bortezomib
 - 82% ORR with daratumumab (in pts with ≥2 completed cycles of therapy)

HORIZON: Study Design

Phase 2, Single-Arm, Open-Label, Multicenter Study

With median follow-up of 10.8 months, 29% of pts on ongoing treatment

(data cutoff 06 May 2019)

ClinicalTrials.gov Identified: NCT02963493.

CBR, clinical benefit rate; DARA, daratumumab; dex, dexamethasone; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EoT, end of treatment; IMiD, immunomodulatory agent; mAbs, monoclonal antibodies; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PI, proteasome inhibitor; POM, pomalidomide; RR MM, relapsed/refractory multiple myeloma; TTP, time to progression; TTR, time to response.

^aPts aged >75 years received dex 20 mg.

Baseline Patient Characteristics (N=121)

Characteristic	N=121
Age, median (range), years	64 (35-86)
Gender (male / female), %	55 / 45
Time since diagnosis, median, years	6.2 (0.7-25)
No. of prior lines of therapy, median (range)	5 (2-12)
ISS stage I / II / III / unknown,ª %	38 / 30 / 29 / 4
ECOG PS 0 / 1 / 2, ^a %	24 / 61 / 14
High-risk cytogenetics, ^b %	62
≥2 high-risk abnormalities, %	19
Del(17p), %	17
Extramedullary disease, ^c %	60

ECOG PS, Eastern Cooperative Oncology Group performance status; ISS, International Staging System.

^aISS stage and ECOG PS at study entry, with data pending for 16 and 10 pts, respectively.

bHigh-risk cytogenetics [t(4;14), del(17/17p), t(14;16), t(14;20), nonhyperdiploidy, gain(1q) or karyotype del(13)] at study entry; data pending for 40 pts; 5 pts with unknown status at study entry had high-risk cytogenetics at diagnosis and were included in the high-risk group.

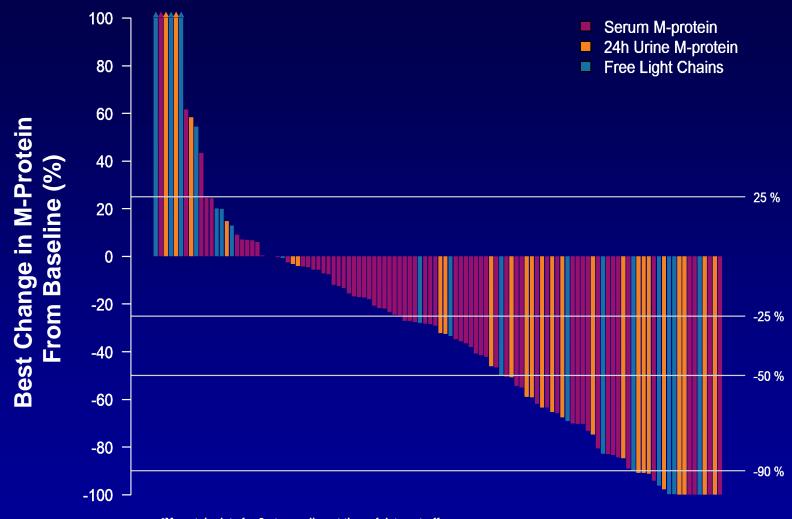
^cData pending for 54 pts.

Prior Treatment and Refractory Status (N=121)

Prior Therapy Status	N=121
Double-class (IMiD + PI) exposed / refractory	100% / 91%
Anti-CD38 mAb exposed / refractory	79% / 79%
Triple-class (IMiD + PI + anti-CD38 mAb) exposed / refractory	79% / 74%
Alkylator exposed / refractory	86% / 59%
≥1 Prior ASCT	69%
≥2 Prior ASCTs	11%
Relapsed ≤1 year after ASCT	20%
Refractory in last line of therapy	98%

ASCT, autologous stem cell transplantation; IMiD, immunomodulatory agent; PI, proteasome inhibitor; mAb, monoclonal antibody.

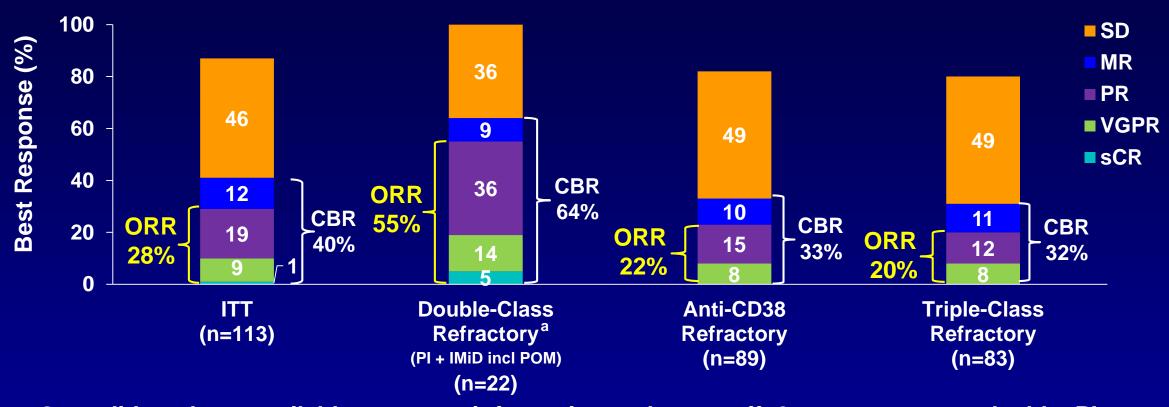
36% used ≥ 3 treatment regimens in last 12 months prior to enrolment


Patient Disposition (N=121)

Disposition	N=121
On treatment at data cutoff	35 (29%)
Discontinued treatment at data cutoff ^a	86 (71%)
Disease progression	59 (69%)
Adverse event(s)	17 (20%)
Physician decision	4 (5%)
Lack of response	3 (3%)
Pt request	3 (3%)

^aPercentages for discontinuation cause have been calculated as fraction of pts who discontinued (n=86).

Best M-Protein Response (n=113)^a


 $^{\rm a}\text{M-protein}$ data for 8 pts pending at time of data cut-off.

Disease stabilization rate (≥SD) 86%

#S1605

- 8 pts did not have available response information at data cutoff; 2 pts response evaluable, PI
 exposed, but refractoriness to PI subject to confirmation, so excluded from subgroup analysis
- One pt with sCR also confirmed as MRD negative (10⁻⁶ sensitivity), with ongoing progression-free period of 13.6 mos
- Median time to response 1.2 mos

1. Rajkumar SV, et al. Blood. 2011;117:4691-4695.

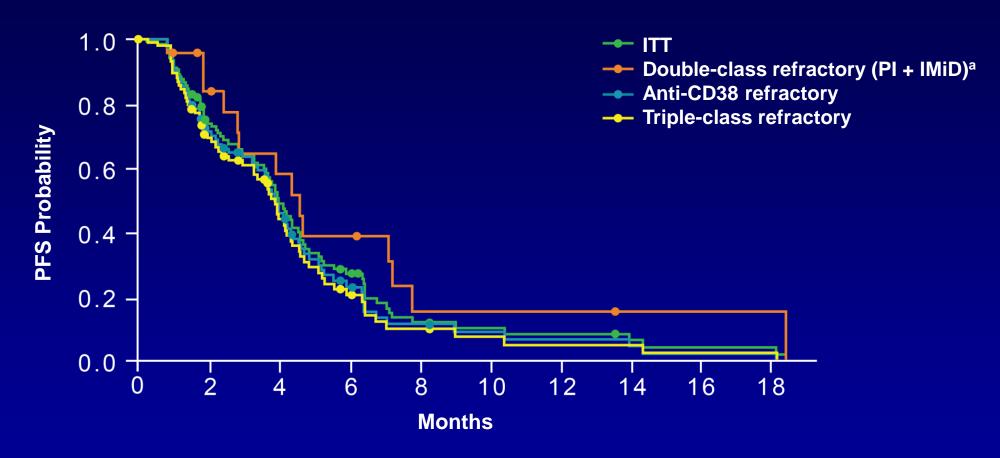
13

Best Response for EMD and Non-EMD Patients (n=67)

	ORR, %
EMD-relapsed/refractory pts ^a (n=40)	29
Non-EMD-relapsed/refractory pts ^a (n=27)	38
EMD triple-class refractory ^a (n=37)	23
Non-EMD triple-class refractory ^a (n=20)	26

 ${\bf EMD, extramedullary\ disease;\ EoT,\ end\ of\ treatment;\ ORR,\ overall\ response\ rate.}$

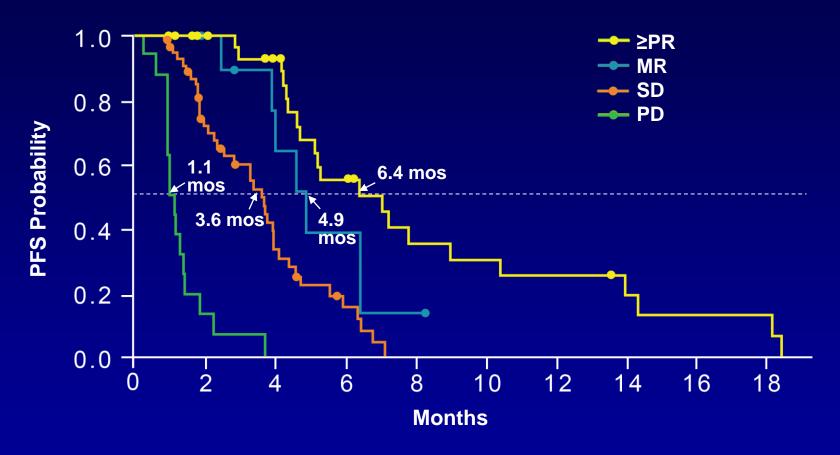
- Poor outcomes observed across the limited clinical trial datasets available¹⁻⁵
- Studies have failed to demonstrate any significant and/or durable response in pts with relapsed EMD: only dara and pom have shown response with ORRs of 17% and 9%, respectively (≥3 prior lines of therapy; dara and pom naïve)¹⁻⁵
- HORIZON is one of the largest clinical trial cohorts of EMD-relapsed/refractory pts to date
 - EMD data pending for 54 pts (across 3 major participating centers with recently enrolled pts, limited data entry to date)


Data cutoff 06 May 2019.

^a2, 1, 2, 1 ps, respectively, did not have any available response data or EoT data at the time of data cutoff.

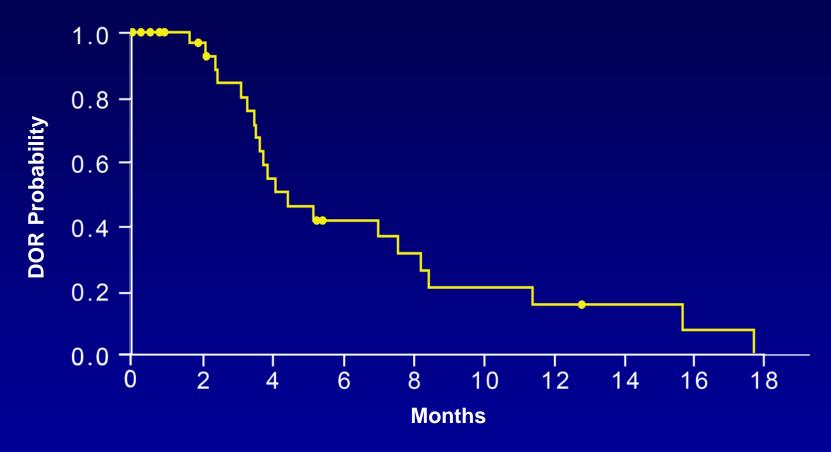
^{1.} Jiménez-Segura R, et al. *Blood*. 2016;128:Abstract 5709. 2. Rosiñol L, et al. *Haematologica*. 2004;89:832-836. 3. Jiménez-Segura R, et al. *Eur J Haematol*. 2019;102:389-394. 4. Usmani SZ, et al. *Blood*. 2016;128:37-44. 5. Ichinohe T, et al. *Exp Hematol Oncol*. 2016;5:11.

Progression-Free Survival (N=121)



#S1605

- Median PFS 4.0 months (95% CI, 3.7-4.6)
- Similar PFS seen across different refractory subgroups

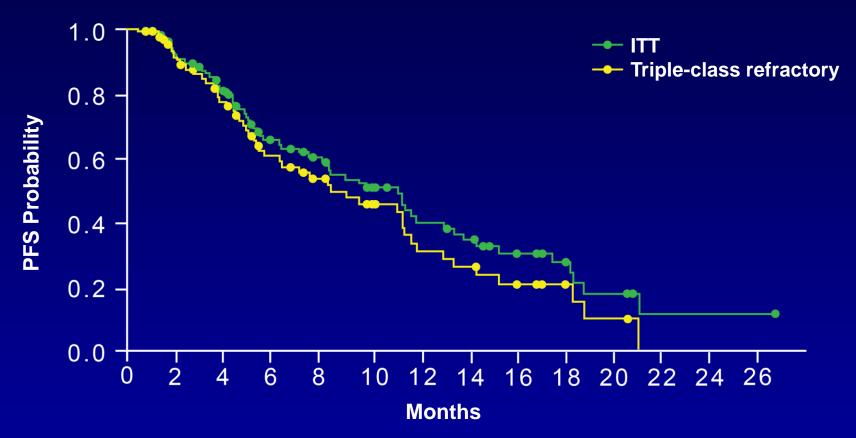

PFS by Response Subgroups (N=121)

Median PFS 6.4 months in pts with ≥ PR; 4.9 months in those with MR

Duration of Response (n=32)

Median DOR 4.4 months (95% CI, 3.6-8.3)

Duration of Response – Subgroup Analysis


	Median DOR, mos	Events, n (%)
All responders ^a (n=32)	4.4	21 (66)
Non-EMD (n=10)	8.1	5 (50)
EMD (n=11)	3.7	7 (64)
Triple-class refractory ^a (n=17)	3.6	12 (71)
Non-EMD (n=5)	7.5	3 (60)
EMD (n=8)	3.7	5 (63)

all and 4 responding pts respectively had missing EMD data.

DOR, duration of response; EMD, extramedullary disease; ITT, intention-to-treat.

Overall Survival (N=121)

 Median OS 11.2 months (95%CI, 8.1-13.9) for the ITT population (N=121), and 8.5 months (95%CI, 6.4-11.8) for triple-class refractory population (n=89)

Dose Modifications Due to TEAEs

Action Taken With Melflufen (N=121)	n (%)
Dose modification due to TEAE	56 (46)
Dose reduced	27 (22)
Dose delayed	43 (36)
Drug discontinued	29 (24)

Dose modification calculated as the number of pts with a TEAE requiring a dose modification at any time point. Dose delayed calculated as number of pts with a TEAE leading to a dose delay. Pts may have had more than 1 action taken with melflufen and may be included in more than 1 category.

Safety and Tolerability

Treatment-Related AEs, n (%)	Grade 3 ^a (N=121)	Grade 4 (N=121)
Any AE	29 (24)	59 (49)
Thrombocytopenia	26 (21)	44 (36)
Neutropenia	31 (26)	37 (31)
Anemia	31 (26)	1 (1)

- Treatment-related SAEs in 20% of pts
 - Most commonly, febrile neutropenia (5%) and thrombocytopenia (2%)
- Grade 4 platelet values at day 29 in 4% of cycles
- 6 pts (6%) experienced treatment-related bleeding: grade 1 in 4 pts, grade 3 in 2 pts
- Low overall incidence of nonhematologic AEs
- No treatment-related deaths

AE, adverse event; SAE, serious adverse event. ^aGrade 3 AEs occurring in ≥5% of pts.

Data cutoff 06 May 2019.

22

Conclusions and Future Directions

- Melflufen continues to demonstrate promising activity in pts with RR MM (majority with EMD) refractory to lenalidomide- and PI-based regimens and subsequently resistant to daratumumab- and/or pomalidomide-based salvage therapy
 - ORR 28% (≥PR), CBR 40% (≥MR), disease stabilization (≥SD) 86%
 - ORR 55% double-class refractory (incl POM), 22% anti-CD38 refractory, 20% triple-class refractory
 - ORR 29% in pts with EMD
 - PFS 4.0 months; DOR 4.4 months
- Treatment generally well tolerated, with manageable toxicity
 - Nonhematologic AEs infrequent
 - Low rate of discontinuation because of AEs
- OCEAN phase 3 study comparing melflufen/dexamethasone and pomalidomide/dexamethasone in RR MM is ongoing (NCT03151811)

AE, adverse event; CBR, clinical benefit rate; EMD, extramedullary disease; MR, minimal response; ORR, overall response rate; PFS, progression-free survival; PR, partial response; RR MM, relapsed/refractory multiple myeloma; SD, stable disease.

Acknowledgments

The investigators and the sponsor thank the patients and their families, the dedicated study center personnel, and all other team members involved in making this study possible.

HORIZONGlobal Study With 16 Sites in 4 Countries

24

Medical writing support was provided by Jennifer Leslie, PhD, of Team 9 Science, supported by Oncopeptides.

Richardson PG, et al EHA 2019 #S1605